We extend the theory of logarithmic Voronoi cells to Gaussian statistical models. In general, a logarithmic Voronoi cell at a point on a Gaussian model is a convex set contained in its log-normal spectrahedron. We show that for models of ML degree one and linear covariance models the two sets coincide. In particular, they are equal for both directed and undirected graphical models. We introduce decomposition theory of logarithmic Voronoi cells for the latter family. We also study covariance models, for which logarithmic Voronoi cells are, in general, strictly contained in log-normal spectrahedra. We give an explicit description of logarithmic Voronoi cells for the bivariate correlation model and show that they are semi-algebraic sets. Finally, we state a conjecture that logarithmic Voronoi cells for unrestricted correlation models are not semi-algebraic.
翻译:我们将对数Voronoi 单元格的理论扩展至高斯统计模型。 一般来说, 高斯模型某个点的对数Voronoi 单元格是其对数- 正常光谱中所含的同系物组。 我们显示, 对于 ML 级 1 和线性共变模型的模型, 两组是同时的。 特别是, 定向和无定向图形模型是相等的。 我们为后一个家庭引入对数Voronoi 单元格的对数理论。 我们还研究共变模型, 其对数Voronoi 细胞一般严格包含在对数- 常相光谱中。 我们对对数 Voronorononoi 单元格的对数组进行了明确的描述, 并表明它们是半数值相对数的图形组。 最后, 我们给出的预言是, 无限制相关模型的对数 Voronionoi细胞不是半数值组。