In this paper we present a new approach for feature fusion between RGB and LWIR Thermal images for the task of semantic segmentation for driving perception. We propose DooDLeNet, a double DeepLab architecture with specialized encoder-decoders for thermal and color modalities and a shared decoder for final segmentation. We combine two strategies for feature fusion: confidence weighting and correlation weighting. We report state-of-the-art mean IoU results on the MF dataset.
翻译:在本文中,我们提出了一种将RGB和LWIR热图像的特性聚合的新办法,用于驱动感知的语义分解任务。我们提议DoDLeNet,这是一个双层深激光仪结构,配有热和颜色模式专用编码器解码器和最终分解的共用解码器。我们结合了两种特性融合战略:信心加权和相关加权。我们在MF数据集中报告了最新、最先进的隐性IOU结果。