Counting the number of nodes in Anonymous Dynamic Networks is enticing from an algorithmic perspective: an important computation in a restricted platform with promising applications. Starting with Michail, Chatzigiannakis, and Spirakis [19], a flurry of papers sped up the running time guarantees from doubly-exponential to polynomial [16]. There is a common theme across all those works: a distinguished node is assumed to be present, because Counting cannot be solved deterministically without at least one. In the present work we study challenging questions that naturally follow: how to efficiently count with more than one distinguished node, or how to count without any distinguished node. More importantly, what is the minimal information needed about these distinguished nodes and what is the best we can aim for (count precision, stochastic guarantees, etc.) without any. We present negative and positive results to answer these questions. To the best of our knowledge, this is the first work that addresses them.


翻译:计算匿名动态网络中的节点数量从算法角度正在诱人:这是一个在有希望应用的有限平台上的重要计算方法。 从Michail、Chatzgiannakis 和 Spirakis [19] 开始,大量文件加快了运行时间的保障,从双重能力到多面性[16] 。所有这些作品有一个共同的主题: 假设存在一个不同的节点, 因为计算无法在确定性上解决, 至少没有一个节点。 在目前的工作中,我们研究自然而然的质疑问题: 如何有效地计算一个以上的突出节点, 或如何在没有区分节点的情况下进行计算。 更重要的是, 这些不同节点所需要的最起码的信息是什么, 以及我们如何在没有任何保证的情况下( 计算精确性、 随机性保证等) 所追求的最好信息是什么。 我们为回答这些问题提出了负面和积极的结果。 据我们所知, 这是针对这些问题的首项工作。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
19+阅读 · 2020年7月13日
A Graph Auto-Encoder for Attributed Network Embedding
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员