One of the first and foremost non-verbal interactions that humans perform is a handshake. It has an impact on first impressions as touch can convey complex emotions. This makes handshaking an important skill for the repertoire of a social robot. In this paper, we present a novel framework for learning human-robot handshaking behaviours for humanoid robots solely using third-person human-human interaction data. This is especially useful for non-backdrivable robots that cannot be taught by demonstrations via kinesthetic teaching. Our approach can be easily executed on different humanoid robots. This removes the need for re-training, which is especially tedious when training with human-interaction partners. We show this by applying the learnt behaviours on two different humanoid robots with similar degrees of freedom but different shapes and control limits.
翻译:人类首先和最重要的非语言互动之一是握手。 它会影响第一印象, 因为触摸可以传递复杂的情感。 这使得握手成为社会机器人重现的重要技能。 在本文中, 我们展示了一个新颖的框架, 用于学习人类机器人的人类机器人握手行为, 仅使用第三人与人类互动数据。 这对无法通过运动艺术教学进行演示的不可回溯的机器人特别有用。 我们的方法可以很容易地在不同的人类机器人上执行。 这样就消除了再培训的需要, 在与人类互动伙伴培训时,这种再培训特别乏味。 我们通过对两种具有类似自由程度但有不同形状和控制限制的不同人类机器人应用所学会的行为来显示这一点。