Historically, Fortran and C have been the default programming languages in High-Performance Computing (HPC). In both, programmers have primitives and functions available that allow manipulating system memory and interacting directly with the underlying hardware, resulting in efficient code in both response times and resource use. On the other hand, it is a real challenge to generate code that is maintainable and scalable over time in these types of languages. In 2010, Rust emerged as a new programming language designed for concurrent and secure applications, which adopts features of procedural, object-oriented and functional languages. Among its design principles, Rust is aimed at matching C in terms of efficiency, but with increased code security and productivity. This paper presents a comparative study between C and Rust in terms of performance and programming effort, selecting as a case study the simulation of N computational bodies (N-Body), a popular problem in the HPC community. Based on the experimental work, it was possible to establish that Rust is a language that reduces programming effort while maintaining acceptable performance levels, meaning that it is a possible alternative to C for HPC.


翻译:在历史上,Fortran和C是高性能计算(HPC)中默认的编程语言。在这二者中,程序员都有原始的功能和功能,可以对系统内存进行操纵,并与基本硬件直接互动,从而在反应时间和资源使用方面形成有效的代码。另一方面,生成可长期维持和可缩放的这类语言的代码是一项真正的挑战。2010年,Rust成为一种新的编程语言,用于同时和安全的应用,采用程序、目标导向和功能语言的特征。在设计原则中,Rust的目的是在效率方面对C进行匹配,但与增强代码安全和生产率相匹配。本文介绍了C和Rust在绩效和编程努力方面的比较研究,作为案例研究选择了N计算机构(N-Body)的模拟,这是HPC社区的一个普遍的问题。根据实验工作,可以确定Rust是一种语言,在保持可接受的性能水平的同时减少编程工作,意味着这是HPC可能替代C的一种语言。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员