The development of quantum image representation and quantum measurement techniques has made quantum image processing research a hot topic. In this paper, a novel Adaptive Quantum Scaling Model (AQSM) is first proposed for scrambling watermark images. Then, on the basis of the proposed AQSM, a novel quantum watermarking scheme is presented. Unlike existing quantum watermarking schemes with fixed embedding scales, the proposed method can flexibly embed watermarks of different sizes. In order to improve the robustness of the watermarking algorithm, a novel Histogram Distribution-based Watermarking Mechanism (HDWM) is proposed, which utilizes the histogram distribution property of the watermark image to determine the embedding strategy. In order to improve the accuracy of extracted watermark information, a quantum refining method is suggested, which can realize a certain error correction. The required key quantum circuits are designed. Finally, the effectiveness and robustness of the proposed quantum watermarking method are evaluated by simulation experiments on three image size scales. The results demonstrate the invisibility and good robustness of the watermarking algorithm.
翻译:暂无翻译