Machine learning-based data-driven modeling can be computationally efficient solutions of time-dependent subsurface geophysical systems. In this work, our previous approach of conditional generative adversarial networks (cGAN) developed for steady-state problems with heterogeneous materials is extended to time-dependent problems by adopting the concept of continuous cGAN (CcGAN). The CcGAN that can condition continuous variables in the cGAN framework is developed to incorporate the time domain through either element-wise addition or conditional batch normalization. As a demonstration case, the transient response of the coupled poroelastic process is studied in two different permeability fields: Zinn \& Harvey transformation and a bimodal transformation. The proposed CcGAN uses heterogeneous permeability fields as input parameters while pressure and displacement fields over time are model output. Our results show that the model provides sufficient accuracy with computational speed-up. This robust framework will enable us to perform real-time reservoir management and robust uncertainty quantification in realistic problems.
翻译:机械学习数据驱动模型可以是基于时间依赖的次表层地球物理系统的高效计算解决方案。在这项工作中,我们以前为不同材料的稳定状态问题开发的有条件基因对抗网络(cGAN)的做法通过采用连续的cGAN(CcGAN)概念而扩大到与时间有关的问题。可以在cGAN框架中设定连续变量的CcGAN(CcGAN)是用来通过元素辅助或有条件的批量正常化将时间域纳入其中的。作为示范,在两个不同的渗透性领域(Zinn ⁇ Harvey变换和双向变换)中研究了同时的多孔弹性过程的瞬时反应。提议的CcGAN(CcGAN)使用异质的渗透性域作为输入参数,而压力和异位字段随着时间的推移是模型输出。我们的结果表明,该模型提供了计算速度的足够准确性。这个强有力的框架将使我们能够在现实问题中进行实时储油层管理和稳健的不确定性量化。