Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limit the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran {over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models} on multiple dataset settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking tools, evaluation protocols, and experimental settings of our work to promote reproducible research in this field.


翻译:点击率(CTR)预测是许多应用的关键任务,因为其准确性直接影响到用户经验和平台收入。近年来,CTR预测在学术界和工业界都进行了广泛研究,结果产生了各种各样的CTR预测模型。不幸的是,仍然缺乏标准化基准和CTR预测研究的统一评价协议。这导致现有研究之间无法复制甚至不一致的实验结果,这在很大程度上限制了其研究的实际价值和潜在影响。在这项工作中,我们的目标是为CTR预测执行开放的基准,并以可复制的方式对不同的模型进行严格的比较。为此,我们共进行了超过7 000个实验,共12 000个GPU小时以上,对多个数据集设置的24个现有模型进行了重新评价。令人惊讶的是,我们的实验表明,通过充分的超参数搜索和模型调整,许多深度模型的差别比预期要小。结果还表明,在CTR预测模型的模型上取得真正的进展确实是一项非常具有挑战性的研究任务。我们认为,我们的基准制定工作不能让研究人员仅能对新模型的实地进行公正的比较,而是让研究人员能够对新模型的实地进行公正的实验性评估。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2021年4月21日
VIP会员
相关VIP内容
专知会员服务
75+阅读 · 2021年9月27日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Top
微信扫码咨询专知VIP会员