A systematic procedure for optimising the friction coefficient in underdamped Langevin dynamics as a sampling tool is given by taking the gradient of the associated asymptotic variance with respect to friction. We give an expression for this gradient in terms of the solution to an appropriate Poisson equation and show that it can be approximated by short simulations of the associated first variation/tangent process under concavity assumptions on the log density. Our algorithm is applied to the estimation of posterior means in Bayesian inference problems and reduced variance is demonstrated when compared to the original underdamped and overdamped Langevin dynamics in both full and stochastic gradient cases.
翻译:将相关无症状差异的梯度作为抽样工具,以优化未得到充分报道的兰埃文动态中的摩擦系数的系统程序作为抽样工具。我们用适当的普瓦森方程式的解决方案来表示这种梯度,并表明根据对日志密度的混凝度假设,可以对相关的第一次变异/变异过程进行简短模拟,以显示其相近性。与原先在完整和随机梯度案例中未得到充分报道和过度报道的兰埃文动态相比,我们的算法用于估计巴伊西亚推论问题中的后方手段,并显示差异的减少。