Channel pruning has made major headway in the design of efficient deep learning models. Conventional approaches adopt human-made pruning functions to score channels' importance for channel pruning, which requires domain knowledge and could be sub-optimal. In this work, we propose an end-to-end framework to automatically discover strong pruning metrics. Specifically, we craft a novel design space for expressing pruning functions and leverage an evolution strategy, genetic programming, to evolve high-quality and transferable pruning functions. Unlike prior methods, our approach can not only provide compact pruned networks for efficient inference, but also novel closed-form pruning metrics that are mathematically explainable and thus generalizable to different pruning tasks. The evolution is conducted on small datasets while the learned functions are transferable to larger datasets without any manual modification. Compared to direct evolution on a large dataset, our strategy shows better cost-effectiveness. When applied to more challenging datasets, different from those used in the evolution process, e.g., ILSVRC-2012, an evolved function achieves state-of-the-art pruning results.


翻译:频道运行在设计高效深层学习模型方面取得了重大进展。 常规方法采用人为的运行功能来评分频道运行重要性, 这需要域知识, 并且可能是亚最佳的。 在这项工作中, 我们提出一个端对端框架, 自动发现强大的运行度量。 具体地说, 我们为表达运行功能和运用进化战略、 基因编程, 开发出高质量的和可转移的运行功能, 创造了新的设计空间。 与以往的方法不同, 我们的方法不仅可以提供精细的运行网络, 用于高效推断, 还可以提供新型的闭式运行度量度, 这些功能在数学上可以解释, 因而可以概括到不同的运行任务 。 进化的功能是在小数据集上进行演进, 而所学的功能在没有任何手动修改的情况下可转移到更大的数据集 。 与大型数据集的直接演进相比, 我们的战略显示出更好的成本效益。 当应用于更具挑战性的数据集时, 与进化过程中所使用的数据集不同, 比如, ILSVRC- 2012, 一个进化的函数可以实现状态运行结果 。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
63+阅读 · 2021年11月25日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
6+阅读 · 2021年10月25日
Arxiv
14+阅读 · 2021年7月20日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
63+阅读 · 2021年11月25日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员