Our generation has seen an exponential increase in digital tools adoption. One of the unique areas where digital tools have made an exponential foray is in the sphere of digital marketing, where goods and services have been extensively promoted through the use of digital advertisements. Following this growth, multiple companies have leveraged multiple apps and channels to display their brand identities to a significantly larger user base. This has resulted in products, worth billions of dollars to be sold online. Emails and push notifications have become critical channels to publish advertisement content, to proactively engage with their contacts. Several marketing tools provide a user interface for marketers to design Email and Push messages for digital marketing campaigns. Marketers are also given a predicted open rate for the entered subject line. For enabling marketers generate targeted subject lines, multiple machine learning techniques have been used in the recent past. In particular, deep learning techniques that have established good effectiveness and efficiency. However, these techniques require a sizable amount of labelled training data in order to get good results. The creation of such datasets, particularly those with subject lines that have a specific theme, is a challenging and time-consuming task. In this paper, we propose a novel Ngram and LSTM-based modeling approach (NLORPM) to predict open rates of entered subject lines that is easier to implement, has low prediction latency, and performs extremely well for sparse data. To assess the performance of this model, we also devise a new metric called 'Error_accuracy@C' which is simple to grasp and fully comprehensible to marketers.


翻译:我们这一代人在采用数字工具方面出现了飞速增长。数字工具使得指数化信息发光的独特领域之一是数字营销领域,货物和服务通过使用数字广告得到了广泛的促进。随着这一增长,多家公司利用多种应用程序和渠道向一个大得多的用户基础展示其品牌身份。这导致产品,价值数十亿美元,可在线销售。电子邮件和催促通知已成为发布广告内容、积极主动地与联系人接触的关键渠道。一些营销工具为市场设计电子邮件和推介信息提供了用户界面,为数字营销运动提供了一种用户界面。市场者还获得了输入主题行的预测开放率。对于扶持市场者来说,最近使用了多种机器学习技术来生成目标线。特别是,深层次的学习技术已经建立了良好的效益和效率。然而,这些技术需要大量贴有标签的培训数据才能获得良好的结果。创建这样的数据集,特别是有特定主题的数据集,是一项具有挑战性和耗时费的任务。在这个文件中,我们提议了一个新颖的Ngram 和快速的预测行距,我们进入了一个更简易的NC-Remal 模型,用来进行IM 和极易的模型的运行。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月7日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员