We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views while preserving specific details of the input image. High-fidelity 3D GAN inversion is inherently challenging due to the geometry-texture trade-off in 3D inversion, where overfitting to a single view input image often damages the estimated geometry during the latent optimization. To solve this challenge, we propose a novel pipeline that builds on the pseudo-multi-view estimation with visibility analysis. We keep the original textures for the visible parts and utilize generative priors for the occluded parts. Extensive experiments show that our approach achieves advantageous reconstruction and novel view synthesis quality over state-of-the-art methods, even for images with out-of-distribution textures. The proposed pipeline also enables image attribute editing with the inverted latent code and 3D-aware texture modification. Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
翻译:我们提出了一个高纤维3D基因对抗网络(GAN)反向框架,可以综合光现实的新观点,同时保存输入图像的具体细节。高纤维3DGAN反向必然具有挑战性,因为3D反向的几何-线性交换,在3D反向转换中,过度适应一个单一的视图输入图像,往往损害潜伏优化期间的估计几何。为了解决这一挑战,我们建议了一个新的管道,以假多视图估计为基础,通过可见度分析来进行。我们保留了可见部分的原始纹理,并利用隐蔽部分的基因前缀。广泛的实验表明,我们的方法在最新技术方法上取得了有利的重建和新的合成质量,即使是在分配外纹质的图像上也是如此。拟议的管道还使得图像与倒影潜码和3D-觉纹理修改能够进行属性编辑。我们的方法使得高纤维3D从一个单一图像中生成,这对AI生成的3D内容的各种应用很有希望。