We prove that any finitely generated torsion free solvable subgroup of the group ${\rm IET}$ of all Interval Exchange Transformations is virtually abelian. In contrast, the lamplighter groups $A\wr \mathbb{Z}^k$ embed in ${\rm IET}$ for every finite abelian group $A$, and we construct uncountably many non pairwise isomorphic 3-step solvable subgroups of ${\rm IET}$ as semi-direct products of a lamplighter group with an abelian group. We also prove that for every non-abelian finite group $F$, the group $F\wr \mathbb{Z}^k$ does not embed in ${\rm IET}$.
翻译:我们证明,该组中任何少量生成的无腐蚀自由溶解分组($@rm IET}$,所有间交换变换中的任何美元)几乎都是贝贝利的。相反,灯光小组($A/wr\mathb ⁇ k$,每组有限亚贝利人以$rm IET}嵌入,每组美元,我们建造许多无法计算的非对等非三步可溶解分组($_rm IET}),作为带非贝利人组的灯光小组的半直接产品。我们也证明,对于每个非美非有限组来说,$F/wr\r\mathb}k$并不嵌入$@rm IET}。