Internet of Things (IoT) sensors in smart buildings are becoming increasingly ubiquitous, making buildings more livable, energy efficient, and sustainable. These devices sense the environment and generate multivariate temporal data of paramount importance for detecting anomalies and improving the prediction of energy usage in smart buildings. However, detecting these anomalies in centralized systems is often plagued by a huge delay in response time. To overcome this issue, we formulate the anomaly detection problem in a federated learning setting by leveraging the multi-task learning paradigm, which aims at solving multiple tasks simultaneously while taking advantage of the similarities and differences across tasks. We propose a novel privacy-by-design federated deep learning model based on a recurrent neural network architecture, and we demonstrate that it is more than twice as fast during training convergence compared to its centralized counterpart. The effectiveness of our federated learning approach is demonstrated on simulated datasets generated by following the distribution of real data from a General Electric Current smart building, achieving state-of-the-art performance compared to baseline methods in both classification and regression tasks.


翻译:智能建筑中的事物(IoT)传感器正在变得越来越普遍,使建筑更适于居住,更节能,更可持续。这些装置感知环境,产生对发现异常现象和改进智能建筑能源使用预测至关重要的多种变化时间数据。然而,在中央系统中发现这些异常现象往往由于反应时间的拖延而饱受困扰。为解决这一问题,我们利用多任务学习模式,在联合学习环境中提出异常现象检测问题,该模式的目的是同时解决多重任务,同时利用不同任务的相似性和差异。我们提议基于经常性神经网络结构的新的隐私组合深层次学习模式,我们表明在培训趋同期间,这种模式比集中的对应系统快两倍多。我们联合学习方法的效力体现在通过传播通用电流智能建筑产生的真实数据而生成的模拟数据集上,在分类和回归任务中实现与基线方法相比的状态性业绩。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2020年12月6日
Arxiv
0+阅读 · 2020年12月5日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员