Manipulated images are a threat to consumers worldwide, when they are used to spread disinformation. Therefore, Comprint enables forgery detection by utilizing JPEG-compression fingerprints. This paper evaluates the impact of the training set on Comprint's performance. Most interestingly, we found that including images compressed with low quality factors during training does not have a significant effect on the accuracy, whereas incorporating recompression boosts the robustness. As such, consumers can use Comprint on their smartphones to verify the authenticity of images.
翻译:被操纵的图像在被用于散布假信息时,对全世界的消费者构成了威胁。 因此, Comprint 利用 JPEG- 压缩指纹可以识别伪造。 本文评估了培训集对 Comprint 性能的影响。 最有趣的是, 我们发现, 在培训过程中将低质量因素压缩的图像包含在内不会对准确性产生显著影响, 而纳入再压缩则会增强强健性。 因此, 消费者可以使用智能手机上的 Comprint 来验证图像的真实性 。