This paper proposes a novel highly scalable non-myopic planning algorithm for multi-robot Active Information Acquisition (AIA) tasks. AIA scenarios include target localization and tracking, active SLAM, surveillance, environmental monitoring and others. The objective is to compute control policies for multiple robots which minimize the accumulated uncertainty of a static hidden state over an a priori unknown horizon. The majority of existing AIA approaches are centralized and, therefore, face scaling challenges. To mitigate this issue, we propose an online algorithm that relies on decomposing the AIA task into local tasks via a dynamic space-partitioning method. The local subtasks are formulated online and require the robots to switch between exploration and active information gathering roles depending on their functionality in the environment. The switching process is tightly integrated with optimizing information gathering giving rise to a hybrid control approach. We show that the proposed decomposition-based algorithm is probabilistically complete for homogeneous sensor teams and under linearity and Gaussian assumptions. We provide extensive simulation results that show that the proposed algorithm can address large-scale estimation tasks that are computationally challenging to solve using existing centralized approaches.
翻译:本文为多机器人主动信息获取(AIA)任务提出了一个新型的高度可扩缩的非中位规划算法。 AIA假设情景包括目标本地化和跟踪、主动的SLAM、监视、环境监测等。 目的是计算多个机器人的控制政策,在先天的未知地平线上最大限度地减少静态隐藏状态的累积不确定性。 现有的AIA方法大部分是集中的,因此面临规模化挑战。 为缓解这一问题,我们提议了一个在线算法,依靠通过动态空间分割方法将AIA任务分解成本地任务。 本地子任务是在线开发的,要求机器人根据其在环境中的功能,在探索和主动信息收集作用之间转换。 转换过程与优化信息收集紧密结合,从而形成一种混合控制方法。 我们表明,基于分解的算法对于同质传感器团队来说,在概率上是完整的,在线性与高比假设之下。 我们提供了广泛的模拟结果,显示拟议的算法可以解决在计算上具有挑战性的大规模估算任务。