Understanding the intrinsic mechanisms of social platforms is an urgent demand to maintain social stability. The rise of large language models provides significant potential for social network simulations to capture attitude dynamics and reproduce collective behaviors. However, existing studies mainly focus on scaling up agent populations, neglecting the dynamic evolution of social relationships. To address this gap, we introduce DynamiX, a novel large-scale social network simulator dedicated to dynamic social network modeling. DynamiX uses a dynamic hierarchy module for selecting core agents with key characteristics at each timestep, enabling accurate alignment of real-world adaptive switching of user roles. Furthermore, we design distinct dynamic social relationship modeling strategies for different user types. For opinion leaders, we propose an information-stream-based link prediction method recommending potential users with similar stances, simulating homogeneous connections, and autonomous behavior decisions. For ordinary users, we construct an inequality-oriented behavior decision-making module, effectively addressing unequal social interactions and capturing the patterns of relationship adjustments driven by multi-dimensional factors. Experimental results demonstrate that DynamiX exhibits marked improvements in attitude evolution simulation and collective behavior analysis compared to static networks. Besides, DynamiX opens a new theoretical perspective on follower growth prediction, providing empirical evidence for opinion leaders cultivation.
翻译:理解社交平台的内在机制是维护社会稳定的迫切需求。大语言模型的兴起为社交网络模拟捕捉态度动态和复现集体行为提供了重要潜力。然而,现有研究主要侧重于扩大智能体规模,忽视了社交关系的动态演化。为填补这一空白,我们提出了DynamiX,一种专注于动态社交网络建模的新型大规模社交网络模拟器。DynamiX采用动态层级模块在每一时间步选择具有关键特征的核心智能体,从而精确对齐现实世界中用户角色的自适应切换。此外,我们针对不同用户类型设计了差异化的动态社交关系建模策略。对于意见领袖,我们提出了一种基于信息流的链接预测方法,推荐具有相似立场的潜在用户,模拟同质化连接和自主行为决策。对于普通用户,我们构建了一个面向不平等性的行为决策模块,有效处理不平等的社交互动,并捕捉由多维因素驱动的社交关系调整模式。实验结果表明,与静态网络相比,DynamiX在态度演化模拟和集体行为分析方面表现出显著改进。此外,DynamiX为粉丝增长预测开辟了新的理论视角,为意见领袖培养提供了实证依据。