Understanding sentiment in complex textual expressions remains a fundamental challenge in affective computing. To address this, we propose a Dynamic Fusion Learning Model (DyFuLM), a multimodal framework designed to capture both hierarchical semantic representations and fine-grained emotional nuances. DyFuLM introduces two key moodules: a Hierarchical Dynamic Fusion module that adaptively integrates multi-level features, and a Gated Feature Aggregation module that regulates cross-layer information ffow to achieve balanced representation learning. Comprehensive experiments on multi-task sentiment datasets demonstrate that DyFuLM achieves 82.64% coarse-grained and 68.48% fine-grained accuracy, yielding the lowest regression errors (MAE = 0.0674, MSE = 0.0082) and the highest R^2 coefficient of determination (R^2= 0.6903). Furthermore, the ablation study validates the effectiveness of each module in DyFuLM. When all modules are removed, the accuracy drops by 0.91% for coarse-grained and 0.68% for fine-grained tasks. Keeping only the gated fusion module causes decreases of 0.75% and 0.55%, while removing the dynamic loss mechanism results in drops of 0.78% and 0.26% for coarse-grained and fine-grained sentiment classification, respectively. These results demonstrate that each module contributes significantly to feature interaction and task balance. Overall, the experimental findings further validate that DyFuLM enhances sentiment representation and overall performance through effective hierarchical feature fusion.
翻译:理解复杂文本表达中的情感仍然是情感计算领域的一个基础性挑战。为此,我们提出了一种动态融合学习模型(DyFuLM),这是一个旨在同时捕捉层次化语义表征和细粒度情感细微差别的多模态框架。DyFuLM引入了两个关键模块:一个自适应整合多层次特征的层次化动态融合模块,以及一个调节跨层信息流以实现均衡表征学习的门控特征聚合模块。在多任务情感数据集上的综合实验表明,DyFuLM实现了82.64%的粗粒度和68.48%的细粒度准确率,取得了最低的回归误差(MAE = 0.0674,MSE = 0.0082)和最高的决定系数R^2(R^2 = 0.6903)。此外,消融研究验证了DyFuLM中每个模块的有效性。当移除所有模块时,粗粒度和细粒度任务的准确率分别下降了0.91%和0.68%。仅保留门控融合模块会导致准确率下降0.75%和0.55%,而移除动态损失机制则分别使粗粒度和细粒度情感分类的准确率下降0.78%和0.26%。这些结果表明,每个模块都对特征交互和任务平衡有显著贡献。总体而言,实验结果进一步验证了DyFuLM通过有效的层次化特征融合,增强了情感表征和整体性能。