In single-agent Markov decision processes, an agent can optimize its policy based on the interaction with environment. In multi-player Markov games (MGs), however, the interaction is non-stationary due to the behaviors of other players, so the agent has no fixed optimization objective. In this paper, we treat the evolution of player policies as a dynamical process and propose a novel learning scheme for Nash equilibrium. The core is to evolve one's policy according to not just its current in-game performance, but an aggregation of its performance over history. We show that for a variety of MGs, players in our learning scheme will provably converge to a point that is an approximation to Nash equilibrium. Combined with neural networks, we develop the \emph{empirical policy optimization} algorithm, that is implemented in a reinforcement-learning framework and runs in a distributed way, with each player optimizing its policy based on own observations. We use two numerical examples to validate the convergence property on small-scale MGs with $n\ge 2$ players, and a pong example to show the potential of our algorithm on large games.


翻译:在单一试剂Markov 决策过程中, 代理商可以在与环境互动的基础上优化其政策。 但是, 在多玩家Markov 游戏( MGs) 中, 互动是非静止的, 因为其他玩家的行为, 所以代理商没有固定的优化目标 。 在本文中, 我们把玩家政策的演进看成是一个动态的过程, 并为纳什均衡提出一个新的学习计划。 核心是根据其当前的游戏性能来制定自己的政策, 并且将其业绩与历史相提并论 。 我们显示, 对于各种 MGs 来说, 我们学习计划中的玩家将会以近似于 Nash 平衡的方式聚集到一个点上。 我们与神经网络一起, 我们开发了 \ emph{ impirical 政策优化 算法, 在强化学习框架内实施, 并以分布方式运行, 由每个玩家根据自己的观察来优化其政策。 我们用两个数字示例来验证小型 MGs 与 $nge 2 玩家的趋同属性的趋同性, 并用一个 Pong 示例来显示大型游戏的算法的潜力 。

0
下载
关闭预览

相关内容

专知会员服务
125+阅读 · 2021年8月25日
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
1+阅读 · 2021年12月12日
Arxiv
3+阅读 · 2020年5月1日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员