The well-known middle levels conjecture asserts that for every integer $n\geq 1$, all binary strings of length $2(n+1)$ with exactly $n+1$ many 0s and 1s can be ordered cyclically so that any two consecutive strings differ in swapping the first bit with a complementary bit at some later position. In his book `The Art of Computer Programming Vol. 4A' Knuth raised a stronger form of this conjecture (Problem 56 in Chapter 7, Section 2.1.3), which requires that the sequence of positions with which the first bit is swapped in each step of such an ordering has $2n+1$ blocks of the same length, and each block is obtained by adding $s=1$ (modulo $2n+1$) to the previous block. In this work, we prove Knuth's conjecture in a more general form, allowing for arbitrary shifts $s\geq 1$ that are coprime to $2n+1$. We also present an algorithm to compute this ordering, generating each new bitstring in $\mathcal{O}(n)$ time, using $\mathcal{O}(n)$ memory in total.


翻译:众所周知的中层猜想显示,对于每整数$n\geq 1美元,所有长度为2(n+1)美元的二进制字符串的长度为2(n+1)美元,其数额为1美元+1美元,其长度为0和1美元,可以周期性地订购,这样,任何两个连续的字符串都可以在较晚的某个位置将第一个位点与补充点互换时出现差异。在他的著作“计算机编程艺术卷4A”中,Knuth提出了一种更强的这种猜想形式(第七章第2.1.3节第56号问题),它要求第一个位交换的位置序列的顺序为2n+1美元,每个区块的长度相同,每个区块的顺序可以通过在上块上加上1美元=1美元(modulo 2n+1美元)获得。在这项工作中,我们用更笼统的形式证明了Knuth的推算法,允许任意移动$\q美元1美元,即合起来为2n+1美元。我们还提出一种算法来计算这一顺序,每次进行新的比特字符总以$=美元=Ox时间计算。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员