Technological advances in information sharing have raised concerns about data protection. Privacy policies contain privacy-related requirements about how the personal data of individuals will be handled by an organization or a software system (e.g., a web service or an app). In Europe, privacy policies are subject to compliance with the General Data Protection Regulation (GDPR). A prerequisite for GDPR compliance checking is to verify whether the content of a privacy policy is complete according to the provisions of GDPR. Incomplete privacy policies might result in large fines on violating organization as well as incomplete privacy-related software specifications. Manual completeness checking is both time-consuming and error-prone. In this paper, we propose AI-based automation for the completeness checking of privacy policies. Through systematic qualitative methods, we first build two artifacts to characterize the privacy-related provisions of GDPR, namely a conceptual model and a set of completeness criteria. Then, we develop an automated solution on top of these artifacts by leveraging a combination of natural language processing and supervised machine learning. Specifically, we identify the GDPR-relevant information content in privacy policies and subsequently check them against the completeness criteria. To evaluate our approach, we collected 234 real privacy policies from the fund industry. Over a set of 48 unseen privacy policies, our approach detected 300 of the total of 334 violations of some completeness criteria correctly, while producing 23 false positives. The approach thus has a precision of 92.9% and recall of 89.8%. Compared to a baseline that applies keyword search only, our approach results in an improvement of 24.5% in precision and 38% in recall.
翻译:隐私政策包含个人个人数据如何由一个组织或软件系统(例如网络服务或应用程序)处理的隐私相关要求。 在欧洲,隐私政策须遵守《数据保护总条例》。 GDPR合规检查的一个先决条件是核实隐私政策的内容是否按照GDPR的规定完整。 不完整的隐私政策可能导致对违反组织行为进行巨额罚款,以及与隐私有关的软件规格不完全。 人工完整性检查既耗时又容易出错。在本文件中,我们建议采用基于AI的自动化系统来检查隐私政策的完整性。我们首先通过系统化的质量方法,建立两件手工艺品来说明GDPR与隐私有关的规定,即概念模型和一套完整性标准。然后,我们利用自然语言处理与监督机器学习的组合,在这些工艺之外开发一个自动化解决方案。 具体地说,我们确定了隐私政策中与GDPR相关的信息内容,随后又对照完整性标准进行检查。 为了评估我们的方法,我们收集了3844%的实际隐私政策搜索结果,从38 %的准确性标准到38 %的精确度。 正确地测量了我们38 %的准确性标准。 正确地测量了我们准确的精确度政策中,对2344的准确的精确度标准,对285的精确度做了一个正确的精确度做了测量。