Latent user representations are widely adopted in the tech industry for powering personalized recommender systems. Most prior work infers a single high dimensional embedding to represent a user, which is a good starting point but falls short in delivering a full understanding of the user's interests. In this work, we introduce PinnerSage, an end-to-end recommender system that represents each user via multi-modal embeddings and leverages this rich representation of users to provides high quality personalized recommendations. PinnerSage achieves this by clustering users' actions into conceptually coherent clusters with the help of a hierarchical clustering method (Ward) and summarizes the clusters via representative pins (Medoids) for efficiency and interpretability. PinnerSage is deployed in production at Pinterest and we outline the several design decisions that makes it run seamlessly at a very large scale. We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
翻译:在技术产业中广泛采用前端用户代表制,为个人化推荐人系统提供动力。大多数前期工作都推断出一个代表用户的单一高维嵌入器,这是一个良好的起点,但不足以充分理解用户的利益。在这项工作中,我们引入了PinnerSage,这是一个端到端推荐人系统,通过多模式嵌入器代表每个用户,并利用这一丰富的用户代表制提供高质量的个性化建议。 PinnerSage通过将用户的行动组合成概念上一致的集群,借助等级分组法(Ward),通过具有代表性的针头(Medoids)对集群进行汇总,以提高效率和可解释性。PinnerSage在Pinterest 生产中被部署,我们概述了一些设计决定,使得它能够在非常大规模上无缝地运行。我们进行了几个离线和在线的A/B实验,以显示我们的方法大大优于单一嵌入方法。