Many of the devices used in Internet-of-Things (IoT) applications are energy-limited, and thus supplying energy while maintaining seamless connectivity for IoT devices is of considerable importance. In this context, we propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from reconfigurable intelligent surface (RIS)-aided unmanned aerial vehicle (UAV) communications. In particular, in a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission. To characterise the agility of the UAV, we consider two scenarios: a hovering UAV and a mobile UAV. Aiming at maximizing the total network sum-rate, we jointly optimize the trajectory of the UAV, the energy harvesting scheduling of IoT devices, and the phaseshift matrix of the RIS. We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate. Numerical results illustrate the effectiveness of the UAV's flying path optimization and the network's throughput of our proposed techniques compared with other benchmark schemes. Given the strict requirements of the RIS and UAV, the significant improvement in processing time and throughput performance demonstrates that our proposed scheme is well applicable for practical IoT applications.


翻译:在互联网电话(IoT)应用中,许多装置的能源是有限的,因此,在保持IOT设备无缝连接的同时提供能源是相当重要的。在这方面,我们提议对IOT设备实行同时的无线电传输和信息传输计划,由可重新配置智能地面辅助无人驾驶飞行器(UAV)通信提供支持。特别是,在第一阶段,IOT设备通过无线电传输从UAV获取能源;然后在第二阶段,UAV通过信息传输从IOT设备收集数据。为了说明UAV的易性能,我们考虑两种方案:盘旋式UAV和移动式UAVAV。为了最大限度地实现网络总和率,我们共同优化了UAV的轨迹,拟议的IAV装置的节能采集计划,我们制定了Markov决定程序,并提出了两个深度强化学习算法,以解决最大限度地实现整个网络总和率的最优化问题。Numericalalalical结果说明UAVAVA系统应用的严格性能改进计划的效力,以及我们拟议的基准性平流技术的改进计划,通过UAVAVA的最佳的进度和基准,展示了我们对UVVA系统应用方法的进度的进度的改进计划。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年2月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年2月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员