This paper investigates spectrum sharing communications in unmanned aerial vehicle (UAV) enabled internet of things (IoT) networks, where secondary/cognitive IoT devices simultaneously upload their data to the UAV following a non-orthogonal multiple access (NOMA) protocol in the pre-allocated spectrum to the primary network. We aim to maximize the minimum lifetime of IoT devices by jointly optimizing the UAV location, decoding order, and transmit power subject to probabilistic interference-power constraints at the primary base station (BS) while considering the imperfect channel state information (CSI). To solve the formulated non-convex mixed-integer programming problem, we first jointly optimize the UAV location and transmit power for given decoding order and obtain the globally optimal solution with the assistance of Lagrange duality. Then, by exhaustively searching all possible decoding orders, we obtain the global optimum to the formulated problem, which is applicable to relatively small-scale scenarios. For large-scale scenarios, we propose a low-complexity sub-optimal algorithm by transforming the original problem into a more tractable equivalent form and applying the successive convex approximation (SCA) technique and penalty function method. Numerical results demonstrate that the proposed design significantly outperforms the benchmark schemes.
翻译:本文调查了无人驾驶飞行器(UAV)启用的互联网(IoT)网络中的频谱共享通信,在这种网络中,二级/认知性IOT装置同时将其数据上传到UAV,在预先分配的频谱中,根据非横向多存(NOMA)协议,将其数据上传到主网络。我们的目标是通过共同优化UAV的位置,解码顺序,最大限度地扩大IOT装置的最小寿命,并在主要基地站(BS)受概率干扰力限制的情况下传输能量。在考虑不完善的频道状态信息时,我们建议采用低兼容性次opmatimal 算法,将原问题转换为更可分解混合的混合英译编程,并在Lagrange 双轨的协助下,将给解码命令的能量传输到全球最佳解决方案。然后,我们通过彻底搜索所有可能的解码指令,使开发的问题达到全球最佳状态,适用于相对小规模的情景。对于大规模情景,我们提出了一种低兼容性亚性亚性算法,通过将原始问题转换为更可分级的州级的州际的公式,并应用了相近似的方法,展示了Nusmagill 。