Interest in components with detailed structures increased with the progress in advanced manufacturing techniques in recent years. Parts with graded lattice elements can provide interesting mechanical, thermal, and acoustic properties compared to parts where only coarse features are included. One of these improvements is better global buckling resistance of the component. However, thin features are prone to local buckling. Normally, analyses with high computational effort are conducted on high-resolution finite element meshes to optimize parts with good global and local stability. Until recently, works focused only on either global or local buckling behavior. We use two-scale optimization based on asymptotic homogenization of elastic properties and local buckling behavior to reduce the effort of full-scale analyses. For this, we present an approach for concurrent local and global buckling optimization of parameterized graded lattice structures. It is based on a worst-case model for the homogenized buckling load factor, which acts as a safeguard against pure local buckling. Cross-modes residing on both scales are not detected. We support our theory with numerical examples and validations on dehomogenized designs, which show the capabilities of our method, and discuss the advantages and limitations of the worst-case model.


翻译:近年来,随着先进制造技术的进步,对详细结构组成部分的兴趣随着先进制造技术的进展而增加。具有分级装饰元素的部件可以提供有趣的机械、热和声学特性,而只有粗糙特征的部件除外。这些改进之一是使部件具有更好的全球阻力。然而,薄质特征容易在当地造成挤压。通常,对高分辨率有限元素的中间体进行高计算分析,以优化具有良好全球和当地稳定的部件。直到最近,工作只侧重于全球或地方的压强行为。我们使用基于弹性特性和局部压强行为的无症状同质化的两层优化,以减少全面分析努力。为此,我们提出了一个同时进行本地和全球对参数定级装饰优化的方法。该方法基于一个最差的情况模型,该模型是防止纯粹的当地压强行为。两个尺度的交叉模式都没有被检测出来。我们用数字实例和验证模型设计模型的理论支持我们的理论,该模型显示了我们方法的最差的优势和优势。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员