Visual Simultaneous Localization and Mapping (vSLAM) systems encounter substantial challenges in dynamic environments where moving objects compromise tracking accuracy and map consistency. This paper introduces PCR-ORB (Point Cloud Refinement ORB), an enhanced ORB-SLAM3 framework that integrates deep learning-based point cloud refinement to mitigate dynamic object interference. Our approach employs YOLOv8 for semantic segmentation combined with CUDA-accelerated processing to achieve real-time performance. The system implements a multi-stage filtering strategy encompassing ground plane estimation, sky region removal, edge filtering, and temporal consistency validation. Comprehensive evaluation on the KITTI dataset (sequences 00-09) demonstrates performance characteristics across different environmental conditions and scene types. Notable improvements are observed in specific sequences, with sequence 04 achieving 25.9% improvement in ATE RMSE and 30.4% improvement in ATE median. However, results show mixed performance across sequences, indicating scenario-dependent effectiveness. The implementation provides insights into dynamic object filtering challenges and opportunities for robust navigation in complex environments.
翻译:视觉同步定位与建图(vSLAM)系统在动态环境中面临重大挑战,其中运动物体会损害跟踪精度和地图一致性。本文介绍了PCR-ORB(点云细化ORB),一种增强的ORB-SLAM3框架,它集成了基于深度学习的点云细化以减轻动态物体干扰。我们的方法采用YOLOv8进行语义分割,并结合CUDA加速处理以实现实时性能。该系统实现了一个多级过滤策略,包括地平面估计、天空区域移除、边缘过滤和时间一致性验证。在KITTI数据集(序列00-09)上的综合评估展示了其在不同环境条件和场景类型下的性能特征。在特定序列中观察到显著改进,其中序列04在ATE RMSE上实现了25.9%的改进,在ATE中值上实现了30.4%的改进。然而,结果显示各序列间的性能表现不一,表明其有效性依赖于具体场景。该实现为动态物体过滤的挑战以及在复杂环境中实现鲁棒导航的机遇提供了见解。