Splitting is a method to handle application problems by splitting physics, scales, domain, and so on. Many splitting algorithms have been designed for efficient temporal discretization. In this paper, our goal is to use temporal splitting concepts in designing machine learning algorithms and, at the same time, help splitting algorithms by incorporating data and speeding them up. Since the spitting solution usually has an explicit and implicit part, we will call our method hybrid explicit-implict (HEI) learning. We will consider a recently introduced multiscale splitting algorithms. To approximate the dynamics, only a few degrees of freedom are solved implicitly, while others explicitly. In this paper, we use this splitting concept in machine learning and propose several strategies. First, the implicit part of the solution can be learned as it is more difficult to solve, while the explicit part can be computed. This provides a speed-up and data incorporation for splitting approaches. Secondly, one can design a hybrid neural network architecture because handling explicit parts requires much fewer communications among neurons and can be done efficiently. Thirdly, one can solve the coarse grid component via PDEs or other approximation methods and construct simpler neural networks for the explicit part of the solutions. We discuss these options and implement one of them by interpreting it as a machine translation task. This interpretation successfully enables us using the Transformer since it can perform model reduction for multiple time series and learn the connection. We also find that the splitting scheme is a great platform to predict the coarse solution with insufficient information of the target model: the target problem is partially given and we need to solve it through a known problem. We conduct four numerical examples and the results show that our method is stable and accurate.
翻译:分割是一种通过分解物理、 比例、 域等来处理应用问题的方法。 许多分解算法已经设计为高效的时间分解。 在本文中, 我们的目标是在设计机器学习算法时使用时间分解的概念, 同时帮助分解算法, 整合数据并加速数据。 由于分流解决方案通常具有一个明确和隐含的部分, 我们将称之为我们的方法混合直线- 隐含( HEI) 学习。 我们将考虑最近引入的多尺度分解算法。 为了接近动态, 只有几度的自由被暗地解决, 而另一些则明确。 在本文中, 我们使用这种分解概念的概念在机器学习中使用分解概念的概念, 并且提出若干战略。 首先, 解决方案的隐含部分可以随着数据解析的更难, 而帮助分解法的分解法的分解法的分解, 也就是我们用一个分解法的分解法 来进行一个分解, 通过一个分解法的分解法的分解法的分解法的分解, 并且通过一个分解法的分解法的分解法的分解, 来进行一个分解。 我们用一个分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解, 的分解法的分解, 的分解法的分解, 的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法是用来 的分解, 的分解法的分解, 的分解法的分解, 的分解, 的分解法的分解法的分解法的分解, 的分解法的分解法的分解法的分解的分解法的分解法的分解, 的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解法的分解