This paper is concerned with the regularization of large-scale discrete inverse problems by means of inexact Krylov methods. Specifically, we derive two new inexact Krylov methods that can be efficiently applied to unregularized or Tikhonov-regularized least squares problems, and we study their theoretical properties, including links with their exact counterparts and strategies to monitor the amount of inexactness. We then apply the new methods to separable nonlinear inverse problems arising in blind deblurring. In this setting inexactness stems from the uncertainty in the parameters defining the blur, which may be recovered using a variable projection method leading to an inner-outer iteration scheme (i.e., one cycle of inner iterations is performed to solve one linear deblurring subproblem for any intermediate values of the blurring parameters computed by a nonlinear least squares solver). The new inexact solvers can naturally handle varying inexact blurring parameters while solving the linear deblurring subproblems, allowing for a much reduced number of total iterations and substantial computational savings with respect to their exact counterparts.
翻译:本文关注通过不精确的 Krylov 方法对大规模离散反向问题进行正规化。 具体地说, 我们得出两种新的不精确 Krylov 方法, 能够有效地应用于非常规化或 Tikhonov 常规化的最小平方问题, 我们研究它们的理论属性, 包括与其确切对应方的联系, 以及监测不精确度的战略。 然后我们运用新方法来分解在盲线分解过程中产生的非线性反向问题。 在这种设置中, 不准确性来自确定模糊值参数的不确定性, 这些参数可能使用变量投影方法回收, 导致内部外层迭代办法( 即进行一个内部迭代周期, 以解决由非线性最小方解析器计算出的模糊参数的任何中间值的线性分解分解分解分解分解分解分解分解分辨分解分解分辨法。 新的异性解解法自然可以处理不同精确的参数, 同时解决线性分解分解分解分解分辨法的参数, 允许大量减少总分解和大量计算分解的分解。