Emotional expressions form a key part of user behavior on today's digital platforms. While multimodal emotion recognition techniques are gaining research attention, there is a lack of deeper understanding on how visual and non-visual features can be used to better recognize emotions in certain contexts, but not others. This study analyzes the interplay between the effects of multimodal emotion features derived from facial expressions, tone and text in conjunction with two key contextual factors: i) gender of the speaker, and ii) duration of the emotional episode. Using a large public dataset of 2,176 manually annotated YouTube videos, we found that while multimodal features consistently outperformed bimodal and unimodal features, their performance varied significantly across different emotions, gender and duration contexts. Multimodal features performed particularly better for male speakers in recognizing most emotions. Furthermore, multimodal features performed particularly better for shorter than for longer videos in recognizing neutral and happiness, but not sadness and anger. These findings offer new insights towards the development of more context-aware emotion recognition and empathetic systems.


翻译:情感表达方式是当今数字平台用户行为的一个关键部分。 虽然多式联运情感识别技术正在引起研究关注,但对于如何利用视觉和非视觉特征来更好地认识某些情况下的情绪,但对于其他情况则缺乏更深入的理解。本研究分析了面部表达方式、语气和文字所产生的多式联运情感特征的影响与两个关键背景因素的相互作用:(一) 发言者的性别,和(二) 情感事件的持续时间。我们使用2 176个人工的带有注释的YouTube视频的大型公共数据集发现,虽然多式联运特征始终高于双式和单式特征,但其性能在不同的情感、性别和持续时间背景下差异很大。对于男性演讲者来说,多式特征在认识大多数情感方面表现得特别好。此外,在承认中立和幸福,而不是悲伤和愤怒方面,多式特征表现得特别短,比长的视频效果要好。这些发现为开发更符合背景的情感识别和同情力的系统提供了新的见解。

0
下载
关闭预览

相关内容

注意力机制模型最新综述
专知会员服务
266+阅读 · 2019年10月20日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员