We present a deformable prototypical part network (Deformable ProtoPNet), an interpretable image classifier that integrates the power of deep learning and the interpretability of case-based reasoning. This model classifies input images by comparing them with prototypes learned during training, yielding explanations in the form of "this looks like that." However, while previous methods use spatially rigid prototypes, we address this shortcoming by proposing spatially flexible prototypes. Each prototype is made up of several prototypical parts that adaptively change their relative spatial positions depending on the input image. Consequently, a Deformable ProtoPNet can explicitly capture pose variations and context, improving both model accuracy and the richness of explanations provided. Compared to other case-based interpretable models using prototypes, our approach achieves state-of-the-art accuracy and gives an explanation with greater context. The code is available at https://github.com/jdonnelly36/Deformable-ProtoPNet.
翻译:我们提出了一个变形的原型部分网络(变形的ProtoPNet),这是一个可解释的图像分类器,它整合了深层学习的力量和基于案例的推理的可解释性。这个模型通过将输入图像与培训期间所学的原型进行比较,以“看起来是这样的”的形式作出解释,将输入图像分类。然而,虽然以前的方法使用空间僵化原型,但我们通过提出空间灵活的原型来解决这一缺陷。每个原型都由几个可适应性改变其相对空间位置的原型部分组成,这取决于输入图像。因此,一个变形的ProtoPNet可以明确反映变化和背景,同时提高模型的准确性和解释的丰富性。与其他使用原型的基于案例的解释模型相比,我们的方法达到了最先进的精确性,并提供了大背景的解释。代码可在https://github.com/jdonnelly36/Deforable-ProtoPNet上查阅。