Adaptive Bit Rate (ABR) decision plays a crucial role for ensuring satisfactory Quality of Experience (QoE) in video streaming applications, in which past network statistics are mainly leveraged for future network bandwidth prediction. However, most algorithms, either rules-based or learning-driven approaches, feed throughput traces or classified traces based on traditional statistics (i.e., mean/standard deviation) to drive ABR decision, leading to compromised performances in specific scenarios. Given the diverse network connections (e.g., WiFi, cellular and wired link) from time to time, this paper thus proposes to learn the ANT (a.k.a., Accurate Network Throughput) model to characterize the full spectrum of network throughput dynamics in the past for deriving the proper network condition associated with a specific cluster of network throughput segments (NTS). Each cluster of NTS is then used to generate a dedicated ABR model, by which we wish to better capture the network dynamics for diverse connections. We have integrated the ANT model with existing reinforcement learning (RL)-based ABR decision engine, where different ABR models are applied to respond to the accurate network sensing for better rate decision. Extensive experiment results show that our approach can significantly improve the user QoE by 65.5% and 31.3% respectively, compared with the state-of-the-art Pensive and Oboe, across a wide range of network scenarios.


翻译:在视频流应用中,以往的网络统计数据主要用于未来的网络带宽预测,但大多数算法,无论是基于规则的方法还是学习驱动的方法,都是基于传统统计(即平均/标准偏差)的输送吞吐量痕迹或分类痕迹,以驱动ABR决定,从而在具体情景中导致不良性能。鉴于不同网络连接(例如WiFi、蜂窝和有线链接)不时地确保令人满意的经验质量(QoE),本文因此提议学习ANT(a.k.a.a.,ccurate Network Textput)模型,以描述过去网络全方位的吞吐量动态,从而根据特定网络集(NTS)得出适当的网络状况(即平均/标准偏差),从而在具体情景中产生专门的ABR模型,我们希望通过该模型更好地捕捉到不同连接的网络动态。我们把ANT模型与现有的强化学习(RL)基于ABR决定引擎的模式结合起来,在这个模型中,不同的ABR-BR模型分别用来描述网络的全域图象动态动态动态动态,并且将我们的用户%的模型比重显示整个网络的模型,可以大大改进整个网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
38+阅读 · 2020年11月24日
【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2021年4月21日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年11月24日
【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员