Inspired by human visual attention, we introduce a Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) framework for modeling the visual attention allocation of drivers in imminent rear-end collisions. MEDIRL is composed of visual, driving, and attention modules. Given a front-view driving video and corresponding eye fixations from humans, the visual and driving modules extract generic and driving-specific visual features, respectively. Finally, the attention module learns the intrinsic task-sensitive reward functions induced by eye fixation policies recorded from attentive drivers. MEDIRL uses the learned policies to predict visual attention allocation of drivers. We also introduce EyeCar, a new driver visual attention dataset during accident-prone situations. We conduct comprehensive experiments and show that MEDIRL outperforms previous state-of-the-art methods on driving task-related visual attention allocation on the following large-scale driving attention benchmark datasets: DR(eye)VE, BDD-A, and DADA-2000. The code and dataset are provided for reproducibility.


翻译:在人类视觉关注的启发下,我们引入了最大负心深反向强化学习(MEDIRL)框架,在即将到来的后端碰撞中模拟驾驶员的视觉关注分配。MEDIRL由视觉、驾驶和关注模块组成。鉴于人类的前视驱动视频和相应的视力固定,视觉和驾驶模块分别提取通用和驾驶专用视觉特征。最后,关注模块学习了由关注驾驶员记录的眼睛固定政策引发的内在任务敏感奖赏功能。MEDIRL利用所学的政策预测驾驶员的视觉关注分配。我们还引入了EyeCar,这是在易发生事故的情况下新的驾驶员视觉关注数据集。我们进行全面实验,并展示了MEDIRL在驱动任务方面比以往最先进的视觉关注分配方法(DR(Yea)VE、BDD-A和DAD-2000)在以下大型驱动关注基准数据集上,对视觉关注度分配的视觉关注程度表现。代码和数据集被提供可复制。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员