This paper proves that the angle of departure (AoD) estimation using the multiple signal classification (MUSIC) with only WiFi control frames for beamforming feedback (BFF), defined in IEEE 802.11ac/ax, is possible. Although channel state information (CSI) enables model-driven AoD estimation, most BFF-based sensing techniques are data-driven because they only contain the right singular vectors of CSI and subcarrier-averaged stream gain. Specifically, we find that right singular vectors with a subcarrier-averaged stream gain of zero have the same role as the noise subspace vectors in the CSI-based MUSIC algorithm. Numerical evaluations confirm that the proposed BFF-based MUSIC successfully estimates the AoDs and gains for all propagation paths. Meanwhile, this result implies a potential privacy risk; a malicious sniffer can carry out AoD estimation only with unencrypted BFF frames.
翻译:本文证明,使用多信号分类(MUSIC)的离线角度(AoD)估计(MUSIC)是可能的,该值在IEEE 802.11aac/ax中定义,只有WiFi控制框架来控制波形反馈(BFF),而频道状态信息(CSI)允许模型驱动的AoD估计,但大多数BFF为基础的遥感技术都是数据驱动的,因为它们只包含CSI和次载体平均流增益的正确的单向矢量。具体地说,我们发现,在基于 CSI 的 MUSIC 算法中,带有子载波平均流增益零的右单向矢量与噪音子空间矢量具有相同的作用。 数字评估证实,拟议的基于BFF MUSIC 的MISIC 成功估算了所有传播路径的AOD和增益。 与此同时,这一结果意味着潜在的隐私风险;恶意嗅觉器只能使用未加密的BFF框架进行AOD估计。