We discuss the practice of directly or indirectly assuming a model for the number of points when modelling spatial point patterns even though it is rarely possible to validate such a model in practice since most point pattern data consist of only one pattern. We therefore explore the possibility to condition on the number of points instead when fitting and validating spatial point process models. In a simulation study with different popular spatial point process models, we consider model validation using global envelope tests based on functional summary statistics. We find that conditioning on the number of points will for some functional summary statistics lead to more narrow envelopes and thus stronger tests and that it can also be useful for correcting for some conservativeness in the tests when testing composite hypothesis. However, for other functional summary statistics, it makes little or no difference to condition on the number of points. When estimating parameters in popular spatial point process models, we conclude that for mathematical and computational reasons it is convenient to assume a distribution for the number of points.
翻译:我们讨论了在模拟空间点模式时直接或间接假设一个点数模式的模式的做法,尽管很少可能在实践中验证这种模式,因为大多数点样数据只有一个模式。因此,我们探讨是否可能在适当和验证空间点进程模型时以点数为条件,而代之以确定点数。在对不同的流行空间点进程模型进行的模拟研究中,我们考虑使用基于功能摘要统计的全球信封测试来验证模型数。我们发现,某些功能性摘要统计的限定点数将导致更窄的封套,从而进行更强有力的测试,在测试综合假设时,也可能有助于纠正测试中的保守性。然而,对于其他功能性摘要统计而言,它很少或根本没有区别点数条件。在估计流行空间点进程模型参数时,我们的结论是,出于数学和计算的原因,可以方便地假定对点数的分布。