We consider the efficient estimation of total causal effects in the presence of unmeasured confounding using conditional instrumental sets. Specifically, we consider the two-stage least squares estimator in the setting of a linear structural equation model with correlated errors that is compatible with a known acyclic directed mixed graph. To set the stage for our results, we characterize the class of valid conditional instrumental sets that yield consistent two-stage least squares estimators for the target total effect and derive a new asymptotic variance formula for these estimators. Equipped with these results, we provide three graphical tools for selecting more efficient valid conditional instrumental sets. First, a graphical criterion that for certain pairs of valid conditional instrumental sets identifies which of the two corresponding estimators has the smaller asymptotic variance. Second, an algorithm that greedily adds covariates that reduce the asymptotic variance to a given valid conditional instrumental set. Third, a valid conditional instrumental set for which the corresponding estimator has the smallest asymptotic variance that can be ensured with a graphical criterion.
翻译:我们考虑在使用有条件的辅助工具组出现未测的混乱组合时对总因果关系的有效估计。 具体地说, 我们考虑在设定线性结构方程模型时, 使用与已知的环形定向混合图相容的相关差错的两阶段最小正方方位估计值。 为了设定结果的舞台, 我们给有效有条件的辅助工具组进行定性, 产生对目标总效果一致的两阶段最小方位估计值, 并为这些估测器产生一个新的无症状差异公式。 有了这些结果, 我们提供了三个图形工具, 用于选择更高效有效的有条件的辅助工具组。 首先, 一个图形标准, 对某些有效的有条件的辅助工具组组进行图形化, 用以确定两个对应的估测器的哪一对的偏差较小。 其次, 一种可贪婪地增加共变法的算法, 将无症状差异降低到给定有效的有条件的辅助工具组。 第三, 一个有效的有条件的有条件工具组, 其相应的估测器具有最小的最小的偏差, 可以通过图形标准加以保证 。