Partial information decompositions (PIDs) extend the concept of mutual information to three (or more) random variables: they decompose the mutual information between a "message" and two other random variables into information components that are unique to each variable, redundantly present in both, and synergistic. This paper focuses on the PID of three jointly Gaussian random vectors. Barrett (2015) previously characterized the Gaussian PID for a scalar message in closed form - we examine the case where the message is a vector. Specifically, we provide a necessary and sufficient condition for the existence of unique information in the fully multivariate Gaussian PID. We do this by drawing a connection between the notion of Blackwell sufficiency from statistics and the idea of stochastic degradedness of broadcast channels from communication theory. Our first result shows that Barrett's closed form expression extends to the case of vector messages only very rarely. To compute the Gaussian PID in all other cases, we provide a convex optimization approach for approximating the PID, analyze its properties, and evaluate it empirically on randomly generated Gaussian systems.
翻译:部分信息分解( PIDs) 将相互信息的概念扩展至三个( 或更多) 随机变量: 它们将“ 消息” 和另外两个随机变量之间的相互信息分解为每个变量特有的信息组成部分, 每个变量都是多余的, 并且是协同的。 本文的焦点是三个共同高斯随机矢量的 PID 。 巴雷特( 2015) 先前曾将高西亚 PID 描述为封闭式的缩放信息 - 我们检查电文是矢量的信息。 具体地说, 我们为完全多变量高斯 PID 中的独特信息的存在提供了必要和充分的条件。 我们这样做的方法是从统计中绘制黑威尔充分性的概念与通信理论中广播频道的退化性概念之间的联系。 我们的第一个结果显示, 巴雷特的封闭形式表达仅仅很少延伸到矢量信息的情况。 为了在所有其他情况下解析高西亚 PID 的情况, 我们为对 PID 系统进行匹配、 分析其属性和对随机生成的戈斯 进行实验性评估提供了convex 优化方法 。