Gau\ss (1823) proved a sharp upper bound on the probability that a random variable falls outside a symmetric interval around zero when its distribution is unimodal with mode at zero. For the class of all distributions with mean at zero, Bienaym\'e (1853) and Chebyshev (1867) independently provided another, simpler sharp upper bound on this probability. For the same class of distributions, Cantelli (1928) obtained a strict upper bound for intervals that are a half line. We extend these results to arbitrary intervals for six classes of distributions, namely the general class of `distributions', the class of `symmetric distributions', of `concave distributions', of `unimodal distributions', of `unimodal distributions with coinciding mode and mean', and of `symmetric unimodal distributions'. For some of the known inequalities, such as the Gau\ss \, inequality, an alternative proof is given.
翻译:Gauteli(1823年)证明,随机变量在零的对称间隔之外,如果其分布方式与模式为零,则该随机变量在零的对称间隔之内的概率是明显的上限值。对于所有平均分布在零的类别,Bienaym\'e(1853年)和Chebyshev(1867年)独立提供了这一概率的另一种更简单、尖锐的上限值。对于同一类分配,Cantelli(1928年)获得一个严格的上限,间隔为半线。我们将这些结果扩大到六类分配的任意间隔值,即“分配”一般类别、“对称分布”类别、“对称分布”类别、“单调分配”类别、“单调模式分配”类别、“带有硬度模式和平均值的单调式分配”和“对称单式分配”类别。对于一些已知的不平等,例如Gaules \s、不平等性,提供了替代证据。