Despite the increasing development of Artificial Intelligence (AI) systems, Requirements Engineering (RE) activities face challenges in this new data-intensive paradigm. We identified a lack of support for problem discovery within AI innovation projects. To address this, we propose and evaluate DIP-AI, a discovery framework tailored to guide early-stage exploration in such initiatives. Based on a literature review, our solution proposal combines elements of ISO 12207, 5338, and Design Thinking to support the discovery of AI innovation projects, aiming at promoting higher quality deliveries and stakeholder satisfaction. We evaluated DIP-AI in an industry-academia collaboration (IAC) case study of an AI innovation project, in which participants applied DIP-AI to the discovery phase in practice and provided their perceptions about the approach's problem discovery capability, acceptance, and suggestions. The results indicate that DIP-AI is relevant and useful, particularly in facilitating problem discovery in AI projects. This research contributes to academia by sharing DIP-AI as a framework for AI problem discovery. For industry, we discuss the use of this framework in a real IAC program that develops AI innovation projects.


翻译:尽管人工智能(AI)系统日益发展,需求工程(RE)活动在这一新的数据密集型范式中仍面临挑战。我们发现,在AI创新项目中,问题发现环节缺乏有效支持。为此,我们提出并评估了DIP-AI——一个专门为此类项目早期探索阶段设计的发现框架。基于文献综述,我们的解决方案融合了ISO 12207、ISO 5338标准与设计思维方法,旨在支持AI创新项目的发现问题,以提升交付质量与利益相关者满意度。我们通过一个AI创新项目的产学研合作(IAC)案例研究对DIP-AI进行了评估:参与者在实践中将DIP-AI应用于发现阶段,并就该方法的问题发现能力、接受度及改进建议提供了反馈。结果表明,DIP-AI具有相关性和实用性,尤其在促进AI项目问题发现方面效果显著。本研究通过分享DIP-AI作为AI问题发现框架,为学术界提供了参考;对于工业界,我们探讨了该框架在真实IAC项目中开发AI创新方案的应用实践。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2024年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员