Several machine learning applications involve the optimization of higher-order derivatives (e.g., gradients of gradients) during training, which can be expensive in respect to memory and computation even with automatic differentiation. As a typical example in generative modeling, score matching (SM) involves the optimization of the trace of a Hessian. To improve computing efficiency, we rewrite the SM objective and its variants in terms of directional derivatives, and present a generic strategy to efficiently approximate any-order directional derivative with finite difference (FD). Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations. Thus, it reduces the total computational cost while also improving numerical stability. We provide two instantiations by reformulating variants of SM objectives into the FD forms. Empirically, we demonstrate that our methods produce results comparable to the gradient-based counterparts while being much more computationally efficient.


翻译:一些机器学习应用程序涉及在培训期间优化高排序衍生物(如梯度梯度),即使自动区分,在记忆和计算方面也可能费用昂贵。作为基因模型的典型例子,得分匹配(SM)涉及优化赫森人的痕迹。为了提高计算效率,我们改写SM目标及其变体的定向衍生物(FD),并提出一种通用战略,以有效近似任何有一定差异的指令衍生物(FD)。我们的近似只涉及职能评估,这种评估可以平行进行,而没有梯度计算。因此,它降低了计算总成本,同时也提高了数字稳定性。我们通过将SM目标的变种改制成FD形式提供了两种即时反应。我们很自然地证明,我们的方法产生与梯度对应方相当的结果,同时在计算上效率要高得多。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年9月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月8日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年9月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员