In this paper we present a frequentist-Bayesian hybrid method for estimating covariances of unfolded distributions using pseudo-experiments. The method is compared with other covariance estimation methods using the unbiased Rao-Cramer bound (RCB) and frequentist pseudo-experiments. We show that the unbiased RCB method diverges from the other two methods when regularization is introduced. The new hybrid method agrees well with the frequentist pseudo-experiment method for various amounts of regularization. However, the hybrid method has the added advantage of not requiring a clear likelihood definition and can be used in combination with any unfolding algorithm that uses a response matrix to model the detector response.
翻译:在本文中,我们提出了一个常客-巴耶斯混合方法,用于使用假实验来估计展出分布的共变情况;该方法与其他常态估算方法进行比较,使用不带偏见的Rao-Cramer约束(RCB)和常客伪实验法;我们表明,在引入正规化时,无偏见的RCB方法不同于其他两种方法;新的混合方法与不同程度正规化的常客伪实验法非常一致;不过,混合方法的优点是不需要明确的可能性定义,可以与任何正在演进的算法结合使用反应矩阵来模拟探测器的反应。