We study privately releasing column sums of a $d$-dimensional table with entries from a universe $\chi$ undergoing $T$ row updates, called histogram under continual release. Our mechanisms give better additive $\ell_\infty$-error than existing mechanisms for a large class of queries and input streams. Our first contribution is an output-sensitive mechanism in the insertions-only model ($\chi = \{0,1\}$) for maintaining (i) the histogram or (ii) queries that do not require maintaining the entire histogram, such as the maximum or minimum column sum, the median, or any quantiles. The mechanism has an additive error of $O(d\log^2 (dq^*)+\log T)$ whp, where $q^*$ is the maximum output value over all time steps on this dataset. The mechanism does not require $q^*$ as input. This breaks the $\Omega(d \log T)$ bound of prior work when $q^* \ll T$. Our second contribution is a mechanism for the turnstile model that admits negative entry updates ($\chi = \{-1, 0,1\}$). This mechanism has an additive error of $O(d \log^2 (dK) + \log T)$ whp, where $K$ is the number of times two consecutive data rows differ, and the mechanism does not require $K$ as input. This is useful when monitoring inputs that only vary under unusual circumstances. For $d=1$ this gives the first private mechanism with error $O(\log^2 K + \log T)$ for continual counting in the turnstile model, improving on the $O(\log^2 n + \log T)$ error bound by Dwork et al. [ASIACRYPT 2015], where $n$ is the number of ones in the stream, as well as allowing negative entries, while Dwork et al. [ASIACRYPT 2015] can only handle nonnegative entries ($\chi=\{0,1\}$).


翻译:暂无翻译

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员