The lexical hypothesis posits that personality traits are encoded in language and is foundational to models like the Big Five. We created a bottom-up personality model from a classic adjective list using machine learning and compared its descriptive utility against the Big Five by analyzing one million Reddit comments. The Big Five, particularly Agreeableness, Conscientiousness, and Neuroticism, provided a far more powerful and interpretable description of these online communities. In contrast, our machine-learning clusters provided no meaningful distinctions, failed to recover the Extraversion trait, and lacked the psychometric coherence of the Big Five. These results affirm the robustness of the Big Five and suggest personality's semantic structure is context-dependent. Our findings show that while machine learning can help check the ecological validity of established psychological theories, it may not be able to replace them.


翻译:词汇假说认为人格特质编码于语言之中,是诸如大五人格等模型的理论基础。我们采用机器学习方法,基于经典形容词列表构建了自下而上的人格模型,并通过分析一百万条Reddit评论,将其描述效用与大五人格模型进行比较。大五人格模型(尤其是宜人性、尽责性和神经质维度)为这些网络社区提供了远更具解释力且可解读的描述。相比之下,我们的机器学习聚类未能提供有意义的区分,未能复现外向性特质,且缺乏大五人格的心理测量学连贯性。这些结果证实了大五人格模型的稳健性,并表明人格的语义结构具有情境依赖性。我们的研究显示,机器学习虽有助于检验既有心理学理论的生态效度,但可能无法取代这些理论。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员