Robotic manipulators are critical in many applications but are known to degrade over time. This degradation is influenced by the nature of the tasks performed by the robot. Tasks with higher severity, such as handling heavy payloads, can accelerate the degradation process. One way this degradation is reflected is in the position accuracy of the robot's end-effector. In this paper, we present a prognostic modeling framework that predicts a robotic manipulator's Remaining Useful Life (RUL) while accounting for the effects of task severity. Our framework represents the robot's position accuracy as a Brownian motion process with a random drift parameter that is influenced by task severity. The dynamic nature of task severity is modeled using a continuous-time Markov chain (CTMC). To evaluate RUL, we discuss two approaches -- (1) a novel closed-form expression for Remaining Lifetime Distribution (RLD), and (2) Monte Carlo simulations, commonly used in prognostics literature. Theoretical results establish the equivalence between these RUL computation approaches. We validate our framework through experiments using two distinct physics-based simulators for planar and spatial robot fleets. Our findings show that robots in both fleets experience shorter RUL when handling a higher proportion of high-severity tasks.
翻译:机器人操作臂在许多应用中至关重要,但已知会随时间发生性能退化。这种退化受机器人执行任务的性质影响。具有较高严重性的任务,例如处理重负载,会加速退化过程。这种退化的一种体现方式是机器人末端执行器的位置精度。本文提出了一种预测建模框架,用于预测机器人操作臂的剩余使用寿命(RUL),同时考虑任务严重性的影响。我们的框架将机器人的位置精度建模为一个具有随机漂移参数的布朗运动过程,该参数受任务严重性影响。任务严重性的动态特性使用连续时间马尔可夫链(CTMC)建模。为了评估RUL,我们讨论了两种方法——(1)一种用于剩余寿命分布(RLD)的新颖闭式表达式,以及(2)预测文献中常用的蒙特卡洛模拟。理论结果确立了这两种RUL计算方法的等价性。我们通过使用两个不同的基于物理的模拟器(针对平面和空间机器人编队)进行实验来验证我们的框架。我们的研究结果表明,当处理更高比例的高严重性任务时,两个编队中的机器人都经历了更短的RUL。