Autonomous navigation of steel bridge inspection robots is essential for proper maintenance. The majority of existing robotic solutions for steel bridge inspection requires human intervention to assist in the control and navigation. In this paper, a control and navigation framework has been proposed for the steel bridge inspection robot developed by the Advanced Robotics and Automation (ARA)to facilitate autonomous real-time navigation and minimize human intervention. The ARA robot is designed to work in two modes: mobile and inch-worm. The robot uses mobile mode when moving on a plane surface and inch-worm mode when jumping from one surface to the other. To allow the ARA robot to switch between mobile and inch-worm modes, a switching controller is developed with 3D point cloud data based. The surface detection algorithm is proposed to allow the robot to check the availability of steel surfaces (plane, area, and height) to determine the transformation from mobile mode to inch-worm one. To have the robot safely navigate and visit all steel members of the bridge, four algorithms are developed to process the data from a depth camera, segment it into clusters, estimate the boundaries, construct a graph representing the structure, generate the shortest inspection path with any starting and ending points, and determine available robot configuration for path planning. Experiments on steel bridge structures setup highlight the effective performance of the algorithms, and the potential to apply to the ARA robot to run on real bridge structures.
翻译:钢桥检查机器人的自主导航对于适当的维护至关重要。 现有钢桥检查机器人的多数机器人解决方案都需要人手干预才能协助控制和导航。 在本文中,为高级机器人和自动化(ARA)开发的钢桥检查机器人提出了控制和导航框架,以便利自动实时导航和尽量减少人类干预。 ARA机器人设计成两种模式:移动式和英寸虫。机器人在从一个表面跳到另一个表面时使用移动模式,在从一个表面和英寸虫模式上移动时使用移动模式。为使ARA机器人能够在移动和英寸虫模式之间转换,将开发一个基于3D点云数据的转换控制器。提议地表检测算法,使机器人能够检查钢表面(平面、面积和高度)的可用性能,以确定从移动模式到英寸虫的一种转变。要让机器人安全地导航和访问桥的所有钢质成员,将四个算法用于处理从深度相机到集群的数据,估计边界,在结构上建立一个显示3D点的转换器控制器。 地面检测算法,在任何可用的轨道结构上建立最短的实验室结构,,在任何运行中, 创建一个可操作的轨道结构上, 确定任何可操作的轨道结构。