Dense point cloud generation from a sparse or incomplete point cloud is a crucial and challenging problem in 3D computer vision and computer graphics. So far, the existing methods are either computationally too expensive, suffer from limited resolution, or both. In addition, some methods are strictly limited to watertight surfaces -- another major obstacle for a number of applications. To address these issues, we propose a lightweight Convolutional Neural Network that learns and predicts the unsigned distance field for arbitrary 3D shapes for dense point cloud generation using the recently emerged concept of implicit function learning. Experiments demonstrate that the proposed architecture outperforms the state of the art by 87% less model parameters, 36% reduced inference time and improved generated point cloud accuracy.
翻译:在三维计算机视觉和计算机图形中,从零星或不完整的点云云产生密度点云是一个关键和具有挑战性的问题。 到目前为止,现有的方法要么计算成本过高,要么分辨率有限,要么两者兼而有之。 此外,有些方法严格限于水密表面,这是许多应用的另一个主要障碍。为了解决这些问题,我们提议建立一个轻量级进化神经网络,利用最近出现的隐含功能学习概念,学习并预测为密度点云生成任意的三维形状的无符号距离场。 实验表明,拟议的结构比艺术状态高出87%的模型参数,减少了36%的推断时间,提高了生成点云的精确度。