We propose VoIPLoc, a novel location fingerprinting technique and apply it to the VoIP call provenance problem. It exploits echo-location information embedded within VoIP audio to support fine-grained location inference. We found consistent statistical features induced by the echo-reflection characteristics of the location into recorded speech. These features are discernible within traces received at the VoIP destination, enabling location inference. We evaluated VoIPLoc by developing a dataset of audio traces received through VoIP channels over the Tor network. We show that recording locations can be fingerprinted and detected remotely with a low false-positive rate, even when a majority of the audio samples are unlabelled. Finally, we note that the technique is fully passive and thus undetectable, unlike prior art. VoIPLoc is robust to the impact of environmental noise and background sounds, as well as the impact of compressive codecs and network jitter. The technique is also highly scalable and offers several degrees of freedom terms of the fingerprintable space.
翻译:我们建议VoIPLoc, 这是一种新型的定位指纹技术, 并应用于VoIP调用源头问题。 它利用VoIP音频中嵌入的回声定位信息支持细微的定位推断。 我们发现该位置的回声反射特性在记录语音中诱发了一致的统计特征。 这些特征在VoIP目的地收到的痕迹中可见, 有利于定位推断。 我们通过在Tor网络上开发通过VoIP频道接收的音频痕迹数据集来评估VoIPLoc。 我们显示, 记录地点可以用低的假阳性率进行指纹和远程检测, 即使大多数音频样本没有贴标签。 最后, 我们注意到, 该技术是完全被动的, 因而与先前的艺术不同。 VoIPLoc 对环境噪音和背景声音的影响以及压缩编码器和网络加速器的影响非常活跃。 该技术也非常可缩放, 提供了可指纹空间的若干自由条款。