Visual data analysis tools provide people with the agency and flexibility to explore data using a variety of interactive functionalities. However, this flexibility may introduce potential consequences in situations where users unknowingly overemphasize or underemphasize specific subsets of the data or attribute space they are analyzing. For example, users may overemphasize specific attributes and/or their values (e.g., Gender is always encoded on the X axis), underemphasize others (e.g., Religion is never encoded), ignore a subset of the data (e.g., older people are filtered out), etc. In response, we present Lumos, a visual data analysis tool that captures and shows the interaction history with data to increase awareness of such analytic behaviors. Using in-situ (at the place of interaction) and ex-situ (in an external view) visualization techniques, Lumos provides real-time feedback to users for them to reflect on their activities. For example, Lumos highlights datapoints that have been previously examined in the same visualization (in-situ) and also overlays them on the underlying data distribution (i.e., baseline distribution) in a separate visualization (ex-situ). Through a user study with 24 participants, we investigate how Lumos helps users' data exploration and decision-making processes. We found that Lumos increases users' awareness of visual data analysis practices in real-time, promoting reflection upon and acknowledgement of their intentions and potentially influencing subsequent interactions.


翻译:视觉数据分析工具为人们提供了利用各种互动功能来探索数据的机构性和灵活性。然而,这种灵活性可能会在用户不知情地过分强调或低估他们所分析的数据的具体子集或属性空间的情况下带来潜在后果。例如,用户可能过分强调特定属性和/或其价值(例如,性别总是在X轴上编码),不强调其他(例如,宗教从未编码),忽视数据的一个子集(例如,老年人被过滤出来)等。作为回应,我们介绍了Lumos,这是一个视觉数据分析工具,它捕捉和显示与数据的互动历史,以提高对此类分析行为的认识。例如,用户可能过分强调具体属性和/或特性(例如,性别总是在X轴上编码)、其他(例如,宗教从未编码过)、忽略了数据中的一组数据(例如,老年人被过滤出来),我们介绍了先前在可视化(目前)中已经审查过的数据反映的数据点,并覆盖了数据与数据互动基础的交互作用。使用现场(例如,我们从视觉角度对用户的传播和后期数据分析中发现,我们如何提高用户对真实认识,在视觉分析中,如何分析,传播基线分析,帮助了数据分析。我们通过视觉分析中发现,在实际数据分析中,分析中提高了用户的分发过程和了解。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Sim and Real: Better Together
Arxiv
0+阅读 · 2021年10月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员