This paper studies the mixing behavior of the Asymmetric Simple Exclusion Process (ASEP) on a segment of length $N$. Our main result is that for particle densities in $(0,1),$ the total-variation cutoff window of ASEP is $N^{1/3}$ and the cutoff profile is $1-F_{\mathrm{GUE}},$ where $F_{\mathrm{GUE}}$ is the Tracy-Widom distribution function. This also gives a new proof of the cutoff itself, shown earlier by Labb\'{e} and Lacoin. Our proof combines coupling arguments, the result of Tracy-Widom about fluctuations of ASEP started from the step initial condition, and exact algebraic identities coming from interpreting the multi-species ASEP as a random walk on a Hecke algebra.
翻译:本文研究了非对称简单排除程序(ASEP)在长度一小段上的混合行为。 我们的主要结果是粒子密度为$( 0. 1) 美元, ASEP 的完全变差截断窗口为$N ⁇ 1/ 3} 美元, 截断配置为$- F ⁇ mathrm{ GUE}}$F ⁇ mathrm{ GUE ⁇ $ 是 Tracy- Widom 分配函数。 这同时也提供了一个新的截断本身的证据, Labb\' {e} 和 Lacoin 早些时候证明了这一点。 我们的证据结合了合并论点、 Tracy- Widom关于ASEP波动的结果从步骤初始状态开始, 以及精确的代数身份, 从将多谱 ASEP 解释为 Hecke 代数的随机行走。