The usual resource interpretation of linear logic says that variables have to be used exactly once. However, there are models of linear logic where this interpretation is too restrictive. In this work we show how in probabilistic models of linear logic the correct resource interpretation should be sampling, i.e. the linear arrow should be read as "the output may only sample once from its input". We accommodate this new interpretation by defining a multilanguage syntax and its categorical semantics that bridges the Markov kernel and linear logic interpretations of probabilistic programs.
翻译:对线性逻辑的通常资源解释表明,变量必须精确地使用一次。然而,有些线性逻辑模型的解释过于严格。在这项工作中,我们展示了在线性逻辑概率模型中,正确的资源解释应该是抽样,即线性箭头应该被理解为“输出只能从输入中抽取一次样本 ” 。 我们通过定义多语种语法及其直截了当的语义来适应这一新的解释,它连接了Markov内核和概率性程序的线性逻辑解释。