This paper is about solving polynomial systems. It first recalls how to do that efficiently with a very high probability of correctness by reconstructing a rational univariate representation (rur) using Groebner revlex computation, Berlekamp-Massey algorithm and Hankel linear system solving modulo several primes in parallel. Then it introduces a new method (theorem \ref{prop:check}) for rur certification that is effective for most polynomial systems.These algorithms are implemented in https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html since version 1.7.0-13 or 1.7.0-17 for certification, it has (July 2021) leading performances on multiple CPU, at least for an open-source software.
翻译:本文是关于解决多面体系统问题。 首先,它提醒人们如何通过利用Groebner revlex计算、Berlekamp-Massey算法和Hankel线性系统平行地解决模数质,以非常高的正确概率有效地完成这项工作。 然后,它为对大多数多面体系统有效的Rur认证引入了一种新的方法(理论\ref{prop: check}) 。 这些算法在https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html中实施,因为自1. 7-13或1. 17版本的认证以来,它至少在开放源软件上,已经(2021年7月)在多个CPU上领先了业绩。